欢迎来到中国电源学会电子资源平台
会员 An Enhanced Rotating Vector-Based Direct Torque Control for Matrix Converter-Fed PMSM Drives Using Virtual Pulsating Vectors
  • 5
  • 0
  • 0
  • 0
  • 2023/01/01
摘要
Matrix converter(MC) rotating vectors(RVs) have the natural advantage for common-mode voltage(CMV) minimization, but it is rather complicated to establish the switching table with RVs in a direct torque control(DTC) strategy for motor drive systems. Moreover, the conventional RV-based MC-DTC has limited practical application, as it suffers from increased torque ripple and current distortion. A novel MC-DTC method using RVs is proposed in this paper, which breaks down the compromise between minimization of CMV and performance of torque and current. Two RVs that rotate in opposite directions are employed to synthesize a virtual vector. These virtual vectors are pulsating in a fixed line and are evenly distributed in the vector plane. Therefore, the switching table with virtual pulsating vectors can be established conveniently. The proposed method can not only eliminate common-mode voltage, but also improve the torque and current steady state performances evidently compared with the existing rotating vector-based method. Experiments are carried out and the advantage of the proposed method is verified.
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?