欢迎来到中国电源学会电子资源平台
会员 基于注意力机制和CNN-LSTM融合模型的锂电池SOC预测
  • 6
  • 0
  • 0
  • 0
  • 2024/01/01
摘要
为提高锂电池荷电状态SOC(state-of-charge)预测精度,提出1种基于注意力机制和卷积神经网络-长短时记忆CNN-LSTM(convolution neural network-long short-term memory)融合模型的锂电池荷电状态预测方法。该模型采用一维CNN和LSTM神经网络学习得到SOC与锂电池放电数据的非线性关系,以及SOC序列存在的长期依赖性。同时,该模型采用“多对一”的结构,将当前时刻的SOC与多个历史时刻的放电数据建立映射关系,并通过注意力机制关注到对当前时刻SOC影响较大的历史放电数据,进一步提升SOC的预测准确度。动态工况下的锂电池SOC预测实验表明,该方法在不同温度条件下的平均预测误差为0.89%,与SVM、GRU和XGBoost相比,分别降低了81.2%、66.7%和56.5%,且优于未融合注意力机制的LSTM和CNN-LSTM,具有较高的预测精度和应用价值。
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?