欢迎来到中国电源学会电子资源平台
会员 不同温度的双卡尔曼滤波算法电池组SOC估计
  • 7
  • 0
  • 0
  • 0
  • 2018/01/01
  • 作者:
    何耀  , 黄东明  , 刘新天  
  • 页数:
    7
  • 页码:
    112 - 118
  • 资源:
  • 文件大小:
    0.79M
摘要
动力锂电池组的荷电状态SOC(state of charge)是整个电池管理系统的重要参数,能直接反映电动汽车剩余可行驶里程,因此如何精确地估计电池组的SOC值是至关重要的。由于电池组各单体电池的不一致性, 以及电动汽车在行驶过程中的复杂环境,所以在电池组内单体电池负载电压的最小值Vmin模型的基础上运用统计学的方法,对模型中的各参数进行有关温度因素的拟合,并通过模拟汽车的实际行驶环境 ,在不同温度下进行实验,从而得到改进的Vmin模型;结合双卡尔曼滤波算法,实现对整个电池组的SOC估计。仿真和实验结果表明该方法对电池组SOC的估计精度有优越性。
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?