欢迎来到中国电源学会电子资源平台
会员 Photovoltaic Module Hot Spot Detection Using Conditional Generative Adversarial Network
  • 6
  • 0
  • 0
  • 0
  • 2023/01/01
  • 作者:
    Lei Chen  , Jian Zhao  , Bo Liu  , Kai Sun  
  • 页数:
    5
  • 页码:
    2550 - 2554
  • 资源:
  • 文件大小:
    0.45M
摘要
The hot spot effect can cause damage to PV modules and seriously affect the safe and stable operation of PV systems. Fast and accurate detection of hot spot faults is of great importance to extend the life of PV modules and reduce power generation costs. In this paper, we propose a conditionally generated adversarial network-based hot spot detection method for PV modules, which can achieve accurate hot spot detection with small samples. Specifically, for the problem of sparse infrared image data of PV module hot spot, the hot spot dataset is expanded by a conditional generation adversarial network. The new dataset is segmented by a semantic segmentation network, which improves the problem of insufficient training of model parameters caused by the small amount of data in the original model. Through experimental validation, the proposed method optimizes the image segmentation effect and achieves accurate detection of hot spots of PV modules compared with the original model.
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?