欢迎来到中国电源学会电子资源平台
会员 变压器绝缘故障类型的改进型RBF神经网络识别算法
  • 5
  • 0
  • 0
  • 0
  • 2018/01/01
  • 作者:
    李浩  , 王福忠  , 王锐  
  • 页数:
    7
  • 页码:
    167 - 173
  • 资源:
  • 文件大小:
    0.82M
摘要
为精确诊断电力变压器内部潜在绝缘故障类型,通过对变压器内部油过热和油纸绝缘中局部放电等8种潜在绝缘故障发生时所产生的气体成分分析,提出了一种以人工免疫网络与粒子群算法改进径向基函数RBF (radial basis function)神经网络的变压器故障诊断算法。重点介绍了基于RBF神经网络的变压器故障诊断模型的构成原理、基于人工免疫网络算法的故障模型隐层中心确定方法以及基于粒子群算法的网络模型权重寻优方法, 并进行了仿真实验。实验结果表明:该算法能有效地识别其绝缘故障类型,且识别精度可达90%以上。
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?