欢迎来到中国电源学会电子资源平台
会员 基于DeepAR与特征选择的锂离子电池在线状态估计
  • 5
  • 0
  • 0
  • 0
  • 2023/01/01
  • 作者:
    史永胜  , 任嘉睿  , 李锦  , 张凯  
  • 页数:
    9
  • 页码:
    163 - 171
  • 资源:
  • 文件大小:
    1.09M
摘要
电池健康状态SOH(state-of-health)和荷电状态SOC(state-of-charge)估计是电池管理系统的核心功能。 目前,状态估计存在依赖大量历史数据以及单一状态估计适应性差的问题,因此提出一种基于DeepAR与特征选择的锂离子电池状态估计模型。首先,提取电池恒流充电过程中电压、温度及时间间隔数据,组成3组老化特征作为模型输入,用于估计SOH;然后,在估计SOC时考虑SOH估计值,消除了电池老化因素对SOC估算的负面影响; 最后,在不同工况下的牛津电池数据集上进行实验验证,并与其他两种算法模型进行误差与收敛性对比。结果表明,所提模型在冷启动估计方面具有较强的优势,SOH和SOC估计精度较高。
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?