欢迎来到中国电源学会电子资源平台
会员 基于TRNN和FA鄄PF融合的锂离子电池RUL预测
  • 5
  • 0
  • 0
  • 0
  • 2023/01/01
  • 作者:
    徐波  , 雷敏  , 王钋  
  • 页数:
    8
  • 页码:
    138 - 145
  • 资源:
  • 文件大小:
    1.32M
摘要
预测锂电池剩余使用寿命RUL(remaining useful life)可以提高电池供电系统的稳定性和安全性,从而明确故障的发生并及时做出响应。在预测过程中粒子滤波PF(particle filter)常用于在线辨识模型参数,但当PF在线辨识参数时易出现粒子贫化问题,需要大量粒子才能完成状态估计,这将会导致预测结果不准确。为了提高RUL预测的准确性,提出一种基于时间递归神经网络TRNN(time recurrent neural network)和萤火虫算法FA(firefly algorithm)优化PF融合的锂电池RUL预测方法。首先,由于TRNN的泛化能力优于经验模型,并且易于捕捉容量退化的长距离依赖问题,因此选用其模拟各种条件下的电池退化模型;其次,基于FA优化的PF技术对TRNN模型参数进行递归更新,使粒子群移动到高似然区域,从而减少PF的贫化;最后,选择不同条件下不同电池的实验数据进行验证和比较。结果表明,与传统方法相比,该方法具有更高的RUL预测精度。
  • 若对本资源有异议或需修改,请通过“提交意见”功能联系我们,平台将及时处理!
来源
关键词
相关推荐
可试看前3页,请 登录 后进行更多操作
试看已结束,会员免费看完整版,请 登录会员账户 或申请成为中国电源学会会员.
关闭
温馨提示
确认退出登录吗?
温馨提示
温馨提示
温馨提示
确定点赞该资源吗?
温馨提示
确定取消该资源点赞吗?
温馨提示
确定收藏该资源吗?
温馨提示
确定取消该资源收藏吗?
温馨提示
确定加入购物车吗?
温馨提示
确定加入购物车吗?
温馨提示
确定移出购物车吗?